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ROTATING DISK5 IN TBE REGION OF

PEIMMENT DEFORMATION>*

By F. Lbzld

The rapidly increasing power demand has led to the preferred
use of large rotating machines because they have great advantages
fran a technical as well as from an economic point of view.
Development progress in this well-established industrial art is
faced w’ithlarge difficulties. Thus it is disadvantageous, for
example, in the cross section of a disk of axially uniform thick-
ness with a small central hole, for the distribution of the
stresses to be very uneven. The stressing of the inner cross-
sectional fibers is substantially larger than that of the outer
fibers; hence, in practice, a design may be loaded only to the
ertent that its greatest stress remains under the strain limit of
the material with an assured margin; new methods must therefore be
sought for obtaining a satisfactory stress equalization in the cross
section of these disks where. in many cases,indispensable desi&n
irregularities exist.

4
An analogous problem was solved a decade ago by the Austrh.u

artillery officer Uchatius. At that time, higher and higher
* requirements were placed on ordnance; this same difficulty occu-rred

in the use of thick-wall bronze barrels. The stress distribution
in the cross section was so uneven that of the entire cross section
only a small portion could be used. TJc~aljiusi~creased the u+j~lj.-

zation of gun barrels through an ingenious technological method in
which he manufactured the barrel with a smaller bore than the .

.
%he abstract of the same title, accepted as a dissertation of

the author at the Darmtadt School of Technology (Reviewed by
E&of. ~. -Ihg. Blaess and Prof. Dr. Schlink) was peflormed
according to the suggestions and under the direction of Prof. Dr.
Schlink and canal.ing. Winy ?rager. I wish to express sincere
thanks at this point for their assistance. The work was concluded
in the summer of 1922.

“~~schleuderte Umdrehungskorper h Gebiet bleibender
*< Deformation.r~ Zeitschrift f~ angewandte Mathematik und Mechanik,

IngenleurwissenschaftlicheForschungsarbeiten, Bd. 5, Heft 4,
Aug. 19’25,S. 281-2%.
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desired oaliber and then, in the oold condition, expanded the bore
to the desired dimension with a steel punoh. The fibers of the
Inner oross seotion would therefore remain stretched with the
strain limit raised; simultaneously,however, the fibers of the
outer cross section would be so elastically stretched that at
discharge a considerable leveling of the rather severe stress dis-
tribution would ooour frau the inner to the outer filers. The
experience with the Uchatius ordnance was a good indication of the
technique that was in keeping with the state of ad-cement at
that time.

As the work progressed, this example appeared to show that
the load oapacity of rotating disks could be increased by spinning ‘
them at high rotative speeds thus proilucinga residual strain in
the fibers of the inner cr,osssection. Similar investigations
were repeatedly started during the last yeax. It must indeed be
reooqized that no solution of the problem has been reached in
terms of what 5.skrmwn at present. In the first place, the
researches of the AlZ2[NACA comment: Allgemeine Elelrbrisohe
Gesellschaft] (reference 1), whioh have developed noteworthy
results in many respeots, are to be noted.

Stodola (reference 2) developed a strength caloulatlon for
overspeeded disks2. In reference 2, still other communications
are to be noted in connection with this yroblrxu.

Sinoe Uchatius, different investi~tions of problems similar
to those of thick-waQed cannons have been encountered; for
example, those of E&uger (reference3), whioh contain a compre-
hensive bibliography both inside and outside this sphere.

Above all, the work of Lasche (reference 1) has led to the
mathematical invest~gation of the problem of overspeeded disks.

1. Tangential oross-sectional loading. - The sum of the
tangential stresses, which are produced by the centrifugal forces
and are circumferentiallyuniform, should be designated as the
tangential stress loading

T.
J

o#F

(F)

(2)

%he concept of spinning or overspending shall hereinafter be
confined to the region of permanent deformaticm.

1
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For an elementary mass in a rotating disk (fig. 1), the equi-
librium condition with respect to radial displacement can be
expressed as usual in the equation

a(op)
-~dxdzdq+x~dx dzd~

at dxdz dcp+@? X2 dxdz d~= O
.

where v denotes the epecific mass of the material and W denotes
the angular veloolty. ,

When the previous equation is Integrated across the entire
cross section F, an expression for the radial equilibrium of
the dcp‘portion of the disk is obtained. This equation is

J

b(orx)
dq) ~dxdz+dq

[ %
dx dz

(F) (F)

(F) (F)

The first two members =niah within the limits of the cross
section according to the law of action and reaction, and transform
at the boundary of the cross section into the sum of the radial
components of the rim loada, which act on the sector dq.

If the equation under consideration is divided by dCp and
the variation of v in consequence of the deformation is
neglected, the following expression ia obtained:

JrZ3(qx) dx dz +
1’

&
T ‘Zdxdz

(F) (F)

+pd ~x2dF= ~citdF

(F) (F)

(2)



Aooordingly, the tangential orow+%ectional loading of a
rotating disk is equal to the sum of the corresponding rim loading
and the centrifugal foroe.

The oorrespondlngrim loading or oentrifhgal force is hereby
understood to be the sum of the radial mmponents of rti forces or
centrMugal loads, respectively, applied to the sector dcp divided
by the angle d%

This formulation is only valid for unfform peripheral deforma-
tion conditions but it Is also valid for any chosen stress-strain
relation of the material.

2. Rotating rings. - As a simple case, the behavior of
rotating cylindrical bodies, which have so little thiokness that
the tangential stresses oan be assumed uniform over the entire
cross seotion -d the radial stresses assumed negligible, will be
first Investigated. Axiomathally, all the loads and stresses
must be related to the dimensions of the deforming body beoause in
the region of permanent deformation those methods of oaloulation
as applied in elastio theory, wnioh oonstder the original dimensions
of the body, would fom an inadmissible source of error. With the
established hypotheses, the shape and the size of the ring cross
section o= aleo be disregarded anU at each instant cmly the
aforementioned unit area that uonta~s the center of ~avlty of
the entire cross secticm need be considered. As a further simpli-
fication, the rings should be freely rotated; thus, cylindrical
rings not loaded with rim foroes should be investigated.

Bemuse taking the dimensions of the deforming body into
amount at each instant is desired, the stress-strainrelation of
the material should also be related to the deforming cross section,
thus the so-oalled true stresses are considered in their dependence
on the strain. The investigationwlllbe particularly extended
for duotile materials, such as, steel, iron, copper. bronze. and
SO forth.
region of
form

where a

The stress-etraln r&atlcm-of these ~te;ials in”the
permanent deformation

and c designate the

oan be expressed familiarly In the

= cc (3)

true stress and unit strain.
respeotiveQ, and y &d ~ designate oharaoteristic cons&nts of
the.given materials- whioh oan be ~etermined easily frcm rupt–ue
tests. Equation (3~ can be obtained by simple curve fitting. In a
rupture diagram of the material (fig. 2, ~a curve), the abscissa
corresponds (after appropriate determination of the soalej to the
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specific strain and the ordinate corresponds to the stress Ua,
whioh is based on the original cross-seotional area. If the varia-
tion of the denstty b ooneequenoe of the deformation is negleoted,
the relation o~oa (1 +6) exists between the stress based on
original area and the true stress in the regicm of permanent defor-
mation. The curve of,true stresses is obtained when the ordinates
of the Ga curve are multiplied by (1 +6). This procedure is
carried through only up to the horizontal branoh of the Oa “ourve
“beeause at this point the necking of the tensile specimen begins
where the use of the conversion made with the help of the measured
longitudinal strain loses all justifioatton. On the ourve of the
true stresses, this so-oalled nedklng point oanbe determined In
the customary manner In whioh the curve of true stresses is first
laid out in the normal way beyond the e~eoted necking point and
then the tangent point is determined by a tangent drawn from the
absolssa point c =-1. (See fig. 2.)

A ring without rim loading could thus be rotated with suuh a
high peripheral velooity that the tangential stress or strain would
exoeed the elastic limit of the material and the ring would remain
stretched In the tmgential direotim. The material is thereby
hardened and the strain in the ring would.mne to equilibritunat
uniform angular velocity when this rendition exactly satisfies the
requirements of equation (2). For the ring element under considera-
tion, which at any the possesses the cross-sectional area 1 and
the same radius of ~ationas the entire deforming ring (fig. 3),
this equation oan be written as follows:

(4)

h this equation, a is the average tangential stress, c the

speoifio tangential strain, r the increased, and ro the original
radius of gyration of the entire ring section.

Equations (3) and (4) thus describe the stress-strain history
of the rotattig ring.

Whether the ring rmains stable in the calculated equilibrium
condition or whether, under certain conditions, deforms further
without increase in angular velocity is of greatest signifioame.
Thus it is hypothesized that the ring exists In momentary equilibrium
at an angular velocity M with resulting strain 6, but that, in
spite of uniform angular velooity (M = oonstant), the entire
oiraunferenoe undergoes a small additional strain de. This addi-
tional strain would inorease the stress in the material from O
to o + do aocording to equation (3), as well as also increasing



6

the

The

cross-seotlonal

@ r~2

NACA TM No. 1192

tangential loading fkom @02 ro2 (1 + C)2 to

(
~1+~) +d~]’ ‘#J2r2 1+*)

additional strain, however, oannot take place as long as it
will harden the material more than the increase in tangential
loading; consequently,the strain oannot
dition

occur as long as the oon-

2dc
G )

or with consideration of equation (4) that

,

is satisfied. This stipulation c!haracteri.zesthe regia of stable
rotation in which a further defo?xnationof the rotating ring om be
evoked only by increasing the angular velocfty.

The critical point of a freely rotating ring will be
designated (or, Cr, ~) where

(5)

In graphioal representation, it is caveniently ascertained from
the true stress-strain curve (fig. 2) that the region of rota-
tional stability reaches from the beginning of the deformation to
the point where the subtangemt amounts to 1 +e/2. This point Cm .
be quiokly datemnined graphically by trial and error; moreover, its
coordinates can be oaloulated from equation (3) according to

and

With the help of equation (4), the associated values of u
and Ur =mrO(l+er) can now be established.

(6)

(6a)

.

.
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lh previous considerations, it has been tacitly tiplied, through
●

use of equation (2), that the defomstion of the rtig is uniform in
the circumferential direction. ~ and how far this uniformity exists
or when a local defamation, a necking of the rotattng ring, can set
in as a consequence of the nature of the loading remains to be
investigated. The be@nning of local defomatlon can therefore be
characterized in such a manner that a very short arc length x of
the ring is strained by c + dc; whereas the rest of the ring
remains strained only by c. The additional strain c!C of this
small arc length would increase the radius to the center of gravity
of all the cross sections of the ring and would therefore lnorease
the tangential loading; stiultsmeously, however, the material of
the necking-arc element hardens in comparison with the rest of the
ring. The local deformation can therefore arise only in those cases

if the unit of area, reduced by ~ ~ ~~ de at the necked position

in spite of the hardentig caused by the associated deformation, is
smaller in load capacity than the unit of oross-sectional -a of
the nonnecked ring-segm&t, which is strained

%’$’” ~(1+.)2former tangential cross-sectional loading 0 = @ r = @2
through the necking of the arc length x is Increased to

[

2

‘1[(
pfd2r02 (l+C) +* =01+

Xde

1l+e)mt

The load capacity of the necked ring element becames

The necking is therefore possible

(“+a”’(’-*)
only if the relations

(
(a+ do) l-~

)

or

-are satisfied. h any case, these relations should be valid for
arbitrary small values of x and they must thus transform at the
beginning of local deformation into the limit condition
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Consequently, the freely rotating ring oan be sustained only to
do

the point of beginning local deformation where ~ . ~e) hence

to the seinepoint where the conventional tensile specimen begins
necking.

3. Rotating disks. - A freely rotating disk of ductile material
will be investigatednext. In this ease, equation (2) is

T.
f

cT@q.l(J.?
f

X2 dF

(F) (F)

If the instantaneousradius to the center of gravity is
desi~ated by r~ and the radius of gyration [NACA comment: About
the oenter of gravity of the seotion shown in fig. 5] by rp, then
the previous equation transforms to

T+L(#

The instantaneous value
therefore be considered as a
(deforming)oross section

h any ease, if equation (8)

(7)

of the tangential stress loading can
function of the instantaneous

T =f (F) (8)

is to be determined analytically
obviously other variables such as e or its equivalent must-be
used, that is, quantities that designate the true homogeneous
speoifio defamation of small oross-sectional elements. The
desired relation T = f (F) would subsequently be obtained by
integration over the entire oross section. Discussion of if and
how this expression is to be obtained analytloally Is desirable,
not assuming but hypothesizing that either the enalfiioal expression
or the graphioal representation (fig. 4) is already available. In
the at-rest oondition, the disk should have the cross section FO,
which must be associated with the value of T = O in equation (8).

The following definitions are also introduced:

C? =@2Frs2 (9) “

C“ = IN? F rI,2 (9a)

.

1



The expression of the dependence of T on W and F 1s to be
investigated Immediately. The customary hypothesis that the

~ O yields the equationmaterial is incompressible ~ =

(lo)

where subscripts 1 and 2 denote distinct associated values of rs
and F. E&cm equations (9) and (10) direotly follow

(11)

The subscript O designates values that relate to the original
measurements of the disk. With this equation, the first part of the
dependence of T on 0) and F has been expressed. If$ however, .
C“ is sought for the second part, the emergence of the radius of
~ation rp presents no small difficulty. The radius of gyration
is not only dependent upon the instantaneous size of the cross
section but is also dependent upon the instantaneous form of the
cross section. Thus, If the size and shape of the starting oross
seotion are known, the value of C“ for a defoming section can be
primarily determined through lmowledge of the succession of shapes
that the cross section assumes. This knowledge is to be determined
possibly by either basic detailed strength and deformation calcula-
tions or with the help of suitable spin tests. An attempt, however,
could still be made to take the possible variation of C“ in its
dependence on F into consideration through determination of the
probable upper and lower limits. For this purpose, a disk of
uniform thickness (fig. 5) will be oonsldered as a symbolic case.
F@re 5 exhibits the disk cross section with initial dimensions

rso) bo) %) Fo = b~ =d also shows the deformed disk with

dtiensions rs, b, h, F = bh. With these synbolic considerations,

the assumption is further made that in the defomned condition, the
disk remains of axially uniform length. Thenj however,

Furthermore,

P$FO~$$2
()

2
c“ =

()

.c#-$
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With consideration of equation (10)

h rso bo
reo bo ho

F bO
=r~bh and —=——=——

ho r~ b FO b

The case where the hypothetical oross-sectionaldecrease occurs
with unchanging width bO/b = 1 can be considered as the lower
limit and the case where the deformation occurs with unchanging
height bO/b = FO/F can be considered as the upper limit. l?rom
these relations it follows that

and
.

()
~3

%in” = co” ~ (12)

(12a)

are the lower and upper limits, respectively.

In order to provide an approximate picture of the range of
limits expressed by percent, a calculation is made with the
following assumed mlues:

FO = 210 square ho = 70 centi- rso = 35 centimeters
centimeters meters

Y = 0.00785 kilogram per w = 314 F/F. = 0.9
cubic centimeter

lb?omthis assumption is determined:

co ‘ = 203,000 kilograms, Co” = 67,700 kilogmms, and Co’ + Co” =

270,700 kilogremso For the value of T = C’ + C“, 274)910 kilo-
grems is obtained as the lower limiting value from equations (11)
and (12) and 286,480 kil.o@ams is obtained as the upper limiting
value from equations (11) and (12a). The ran~e of limits thus

includes about ~ percent of the lower value of T. With the

deformation rate of F/l?O assumed ~s 0.9, this range of limits
must be regarded as rather large. Closer baunds on the range of
limits could easily be attained in given cases on the basis of spin
tests or deformation calculations conducted for similar disks.

,,
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.Thi.squestion will be pursued
tions (11) and (12) will be ~oined

T =CO’ FO/F+

where the value of’ k may well be
instantaneous cross seotkrn but in
tion k will, in all probability,

no further but instead
in a generalized form

Co” (F/’FO)k

a fumtion of the
the course of the
lie between 1 and

size

11

equa-

(13)

of the
entire deforzua-
3. Associated

values of T, F, and u could th& be detemined first if, in
equation (8) as well as equation (13), the dependence on F is
graphically or mathematically exhibited.

It is desired to determine conveniently the instability point
of a freely spinning disk ficanequaticn (13). Instead of the
sequence of oaloulations applied to the ri.ng)d:hoseoaloulations
shall b~used that mnsider the stipulation — = O or for

‘isks a = 0’
as direct indications of inst%ility. If the

derivative of equation (13) is formed with respect to F under
~w

the assumptions that ~ = O and k = constant the resulting

equation is

dT *-1
—=.
dF

Co’ FO/F2 +kCO”v= - l/F (C’ - kc”)

or

dT
—=-l/i?[T-(k+l)C”]
m (14)

h one case, this equation yields the analfiical and in other
cases the ~aphical determination of the instability point. Although
the testability point oan be graphically obtained frcm the inter-
section of the curves dT/dF and - @ [T - (k + 1) C“], the
following procedure yields the result still more rapidly. The
ourve of T - (k + 1) C“ plotted against F is calculated and
drawn. Next, the abscissa F is ascertained with which the
associated tangent to the T ourve and the radius vector (drawn
from the origin of coordinates) to the T - (k + 1) C“ curve form
oozupltientaryangles with the positive direction of the axis of
absciseas.

It is also of interest to detemine
a freely rotating ring in the coordinate
from the relation

dT_-~
dl’F

the instability point of
system T, F obtatied

(15)
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which implies that at the point referred to the subtangent is equal
to the ord,inate. [NACA cement: Actually abscissa.] Equation (14)
would also transform to this same form if C“ could be neglected
In comparison with C’. This neglect is obviously never permissible
because the neglect is allowable only for rings. If, however, easy
ascertainment of the instability point of a freely rotating disk
from equation (15) is desired, too Mge a value of 1? would be
obtained. The region of unstable rotation thus appears to begin
with a smaller d@onnation then that which is the case with the
correct determination according to equation (14). One hypothesis
naturally contains this last assertion, namely, that the value of
k is greater than -1. This assertion will always prove correct in
practice. IX, in one wq or another, curve T = f (F) is thus
graphically obtained for a freely spinning disk, the lower limiting
value of the instability point could be determined most quickly
from equation (15).

As was already accomplished for rotating rings, lt is possible
to show with similar reasoning that the necking of the disk first

d!t!begins at the point where ~ = O therefore where the T curve

has a horizontal tangent. This point of the T curve corre-
sponds to the necking point of the tensile test because the
curve T = f (F) is essentially similar to that of aa.

The instability point natur@ly occurs with a smaller deforma-
tion in a spinning disk that is under the influence of centrifugal
rim loading than in a freely rotating disk. This occurrence is
also valid for rings. The pursuance of these cases, although easy
to carry through for each, will be discontinued at this point.

4. Unstable reghn of rotation. - No consideration has been
made in the precedfng discussim of the veloclty of deformation.
l?xperhuenta lmeasurementof the velocity of defoxmatton is largely
related to the tensile test. The stress-strain curve of figure 2,
as far as It considers a numerical evaluation, is intrinsically
related to the usual strain veloolty by rupture tests. The curve
could lie somewhat lower with an infinitely slow velocity of
deformation. Suttable investigations, however, have proved that
the effect of the usual rupture velocity in the material test for
steel and iron is so unimportant that these curves can be considered
as the stress-strain curve of the infinitely S1OW deformation with
little error.

For the sake of simplicity, a freely spinning ring is
considered. Subsequently, the reasoning can also be significantly
applied to other s fnning bodies.

~
The ring attains the instability

pOillt CJr= @2 ro (1 + Cr)2 with very little deformation velocity

m
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at the angular velocity corresponding to the maximum point of the
w ourve (fig. 2). The previous mathematical analysis has furnished
the proof that, if the angular velocity remains unchanged, the ring
deforms further - in mntrast to the stable defomatton range where
this would be possible only by increasing the revolutions. ti
general, the angular velocity will also be ocmsidered as a variable
h

If
it

If

calculation and as a function of time

~2 =fl (t) (16)

the deformation proceeds with appreciable and variable velooity,
must also be considered in relatim to the time; for example,

e =fz (t) (17)

calculation aocording to the preceding discussion is desired,
mnsideration of the so-oalled dynamic stress ad and not the
stress o normally calculated fiam rupture tests would be
necessary. The dynmic stress is larger than the static strength
of the material. The familiar characteristic of materials, which
stipulates apparently higher defomuaticm loads with increasing
velocity, proves that. The dynamic stress is not only dependent
upon the specific strain but is also dependent upon the instem-

taneous strain velocity ~

(18)

The tangential cross-sectional loading also involves en addi-
tional force2 which> evoked by the centrifugal acceleration of the
ring, opposes the centrifugal force> and for the unit cross section
is equal to3

d2r d2e

-57
.-~~2(l+e)— dt2

The dynamic equilibrium condition of a tieely spinning ring is
consequently

. . ..

presumably this term would usually be comparatively small in
practical oases, which, however, will not be considered here.



( )“The rdatbn ~d = f3 c} ~ must be ascertained for the

@ven material by means of dynamic rupture tests. Equation (19)
then enables either the calculation for given assumptions of
e f2 (t), which thereby stipulates 0)2 = fl (t) or inversely and
f&lly for any desired associated values of c, w, and ad.

Investigations concerning dynamic stresses are often conducted
for various materials. Ludwik (reference4, pp. 4A to 53) ran tests
on tin wires and established the form of the velocity curve
(ordinate,dynamic stress; abscissa, effective strain velocity
q
dt> where d~ = ~) as logarithmic with uniform specific

strain 6 = constant.

Plez& (reference 5) conducted dynamic rupture tests with low-

carbon steel. Simultaneous values of ad, C, and ~ could readily

be determined from his measurements. Unfortunately, these measure-
ments were analyzed from another point of view and only the evalua-
tion, not the diagrams, were published. Plank maintained that the
dynemio stress b the elastic region of defo~tionj below a certain
velocity of deformation, progressed proportionately to the velocity
of deformation but inferred, howevery possibly with consideration
of the results of Ludwlk, that in the region of permanent deforma-
tion this relation can in no case be proportional. It iS

recognized that if tensile specimens of the same material are
ruptured with distinct but in each case uniform deformation
velocities, distinct stress-strain curves are obtained that, for
given abscissas e, would possess higher ordinates ad the greater
the deformation velocities. With certain assumptions, the ordinary
stress-strain curve may be considered as a datum curve, which
accordingly would lie at the lowest position. In general, it .
cannot be predicted if and how much the deformation limit of the
material, thus in one instance the uniform strain and in the other
the rupture strain of the material, will be influenced by the
deformation velocity. The specific characteristicsof the
materials are of accompanying importance.

Some stress-strain curves have been included in figure 6 that
correspond to the increasing but otherwise uniform strain velocities

Vo, VI, v2, and V3, where v = ~, and moreover, the u curve

corresponding to VO, co has been included. If the ring has
attained the instability point with the nomally extremely small
stretch velocity vo and its angular velocity remains unchanged
or increases or even, as will be shown, is decreased in a special

.

“
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manner, the stretch velocity increases continuously according to equa-
- tfon (19). The question arises as to if end how the stretch velocity

can be best c~trolled at all tties.

The assumption is made that the ring attains a speclflc
strain 6’ after a certain unlgmwn defamation path in the unstable
deformation region with an angular VelOCity ~d’j a deformation
velocity v’, and a dynamic stress ~d’ (fig. 6). Obviously,
these four values should satisfy equation (3.9). If reduction or
even complete annulment of the deformation velocity Is desired, it
is best accomplished by the sudden reduction of the an=~lar velocity.
If, for example, the angular VelOCity ie reduced from ~d’ to ~“,
equations (3) and (4) result in a negative tangential “overbalanced
force”, which is only to be explained in that no further deformation
is therefore possible. The deformation condition Is transfortoedto
an elastic one, namely, throu@ reduction of the stress in the ri~
material to 0 “, that is, material the yield point of which had
previously been raised to CS’> 0“. The actual process differs
from this process because the centrifugal kinetic energy of the

. ring material is not annulled by the sudden reduction of the
angular veloclt,y. In calculations, therefore, the second member
of the right side of equation (19) is to be made positive and the
deformation velocity and dynamic stress will diminish with a certain
retardation to O and to o“, respectively. Thie retardation and
the increase in e’. caused thereby can well be disregarded in
practical cases. If tinegoal were only the reduction of the strain
velocity, the angular velocity Would later be increased from W“
to @’ (fi.g.6), wheye the defoz?uationwould again begin with

. velocity increasing from O.

Thus it is to be observed whether through suitable variation
of the angular velocity, which naturally corresponds to varying
the tangential crose-sectional load, the deformation velocity and
thereby the entire region of rotational instability can be
controlled. These deliberation.eclarlfy the meaning of the
angwlar-veloclty curve, which appertains to zero deformation
velocity in the unstable plastic-flow region. This curve specifies
those values of U with the associated strain of the deformi~
ring that one must stay belowln order that deformation of the ring
be increased in the unstable region of spiming.

It is quite obvious that the descriptions of events or analyses
have complete validity for disks of =bitrary contour.

.
5. NeckinR re~ion. - A disk tends toward local deformation in

the neckin~ region of rotation. The procees occurs independently

. of the characteristics of the ~sta~le re#~n of rotation.
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If achievement of commercial advantages is attempted in
specified cases through plastlo deformation, the limit of applica-
bility of the process 1s detezwdned by the occurrence of necking.
One reason for investigatingthe process of rotational defamation
in the region of necking is the determination of if and how a
uniform defamation oan be attained in the circumferential direc-
tion. Moreover, possibilities of such an attainment exist. It is
contemplated, for example, that a ring will be spun on a right
ciroular cone, the etiernal surface of which is finely grooved In
the axial direction. If the ring material is quite soft and
ductile, the grooves would be loosened somewhat at the inner
surfaoe with the attainment of the netikingpoint. Before spinning,
however, the seineeffect could be produced by so pressing the
ring on the cone that the tangential surface friction, increased
by this ❑eans, would set a certain obstruction in the way of the
beginning of local deformation. Similar externally affected
mechanical expedients could well be variously applied. In other
cases, there are materials for which a suitable deformation
velocity influences the course of the tensile test in such a
manner that the test bar is allowed to stretch uniformly in other
neoking regions along its.entire length. There are familiar
materials, the internal frictional resistance of which is strongly
au@ented by increasing deformation velocity and that, moreover,
in consequence of cold deformation, are hardened very little or
not at all (reference4, p. 40). These materials to which
presumably steel and iron are also to be added at certain
incandescent temperatures could thus be uniformly defomed even
in the necking region of spinnfng with appropriate defamation
velocities.

In order to understand correctly the spin prcmess in the
region of necking, a preltmlnary statement should be made about
the necking region In em ordinary tensile test. In regard to
this situation, it should be recalled that figure 2, where the
stress-strain ourve was introduced only In the stable and unstable
regions and therefore up to the necking point, is in contrast with
figure 4 where the path of the tangential stress loading in the
region of neoking has also been characterized. The continuation
of the curve would thereby ordinarily be determined by plotting
the instantaneous tensile load on the necking specimen and calcu-
lating the associated specifio strain from the measured contrac-
tion of the cross section. This method, however, arouses many
questions. The stress-strain curve of the tensile test corresponds
in its path up to the neoking point (the effect of the grip is
negleoted) to a uniaxial stress condition. This ch~acteristic
is of @eat importance and It would be desirable if it also

.

●

●
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characterized the path of the curve in the necking region. However,
. the exterior surface of the necked portion of the bar, which is free

from surface forces, is conically bounded and consequently large
radial components Or must appear in addition to the stre~s
component CT parallel to the axis (fig. 7), so long as the cross-
contraction coefficient of the material is not infinitely large.

For example, with soft, low-carbon steel, values of or/O over
0.3 are ascertained. These values, however, evoke a triaxial stress
distribution in the necked test bar, the neglect of which is hardly
permissible. The radial stresses stipulate an essentially uneven
distribution of axial stresses over the cross section. From this
distribution, it is evident that individual circular strips ot the
nec~in,~section have undergone different specific strains. Thus
the possibility exists that the earlier cross sections, except for
the section at rupture, also may not be plane and must be
calculated according to the significant sheer stresses. The
specific strain stipulated by the contraction of the rupture section
is a relatively fictitious value over the entire rupture section in
every case and, in reality, canbe correlated for only a small,
undetermined, cross-sectional ring strip the same as the
true fracture stresses, which are obtained in the usual manner.
That both of these values =e associated with the same ring strip
appears to be, in general, of the highest improbability. In
reference to this condition, no notice will be taken of the
metallcgraphic consequences; they already fall outside the scope
of this work. As long as the “static” and “dynamic” stress-strain
curves for the necking region of the tensile test are not
ascertained with undisputable accuracy for a “necking-free” deforma-
tim path} the deformation due to rotation in the necking region
=H he only qualitatively followed for rings.

The case of spinning In the necking range, in which the
un~,formdeformation in the circumferential direction is effected
through externally used mechanical methds will not be examined any
closer. That which’has been said for the unstable re~ion remains
entirely vail.dfor this case. The situation Is different if
ed~ustment of the uniformity of the deformation by means of suitable
defonnatton velocities is desired. In these cases there k, in
~eneral, a critical deformation velocity for each deformation
Grad:ent that cannot be reduced without the body beginning to neck;
these deformation velocities can be ascertained through suitable
tests. Thus, as in the unstable region of spinning, the deforma-
tion velocity may not be arbitrarily reduced but with its lowered
lunit carefully refiarded,a region equ.tvalentto a zone of positive
?ianSermust be passed over in all possible haste, with tine
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iniation as well as with the interruption of deformation. In other
respects, everything that was developed for the unstable range of
rotation is also valid for this case.

Zn this respect, it is desired to present a rigorous interpre-
tation of the necking branch of the tangential-stress-loadingcurve
characterized In figure 4. This branch exhibits those values of
the tangential cross-sectional loading that must be reduced in order
to transform the deformation state of the disk, which previously
had been arbitrarily defonued without necking to the subject cross
section, to an elastic state; that is, the plastic deformation is
thereby increased. At least, the same tangential loadlngs must be
used when repeated introduction of plaatlc deformation is desired.

The equivalent interpretation for rings in the necking region
would have the extrapolation,which was not drawn in, of the true
stress curve, which, as already said, must correspond to the path
of an imaginary necking-free tensile test with very little strain
velocity.

In addition, an important situaticm will be emphasized at this
point. In all the reasontng concerning the deformation due to
rotation in the necking region, certain assumptions are implied,
namely, that the use of a deformation velocity corresponding to a
uniform deformation is really possible. This assumption could break
down under conditicms such that these deformation velocities evoke
a premature fracture that could completely exclude, or signif-
icantly limit, this region of defomatlon. Naturally, this
possibility must be investigated for individual materials case by
case and also the possibility must be investigated of whether the
danger zcme of deformation velocities can be passed through so
quickly with the initiation or interruption of deformation that
practically no further necking occurs.

6. Technological considerations. - Rotation4 in the range ?f
permanent deformation could, for example, serve the exclusive
purpose of fabrication. Plastic materials would come tito considera-
tion, which principally or preponderantly could hardlybe said to
have a deformation limlt in the usual semse.

%he autofrettage of gun barrels (reference 3, p. 282) prooeeds
with similar phenanena. However, the length of the mathematical
treatment would be halved. The subsequent expositions are also
naturally valid for this olosely related problem.
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A ring of purely plastic material, which does not strati-
. harden in consequence of the permanent deformation, is considered.m

The path of the tangential stress load in the F-T diagram will be
characterized by a straight line through the origin of coordinates

a (Tpl iineinfig. 4). In addition, plastic materials tend toward
4
N incipient necking with slowly applied tensile stress. This ,charac-

teristic is also expressed by the Tpl line, in which the
familiar characteristic of the deformation path in the necking

region ~> o of the TPI line is satisfied by a constant value.

That which has already been said for the necking region is there-
fore valid in the same sense for plastic materials through which
the correct interpretation of the Tpl line is also given. In
practice, the fozmdng of rings or other bodies of revolution has an
essential role. Only analogous hot-forged, structural elements
are contemplated. The earlier deliberations concernhg the necking
region arise quite importantly with respect to the spin forming of
plastic materials.

.-

.

Ductile materials, which harden with cold deformation, extend,
in general, through all.three deformation regions. In contrast to
materials of perfect plasticity, suitable consideration must he
given to the permissible defomati.on limit of these materials. fi
any case it should be emphasized that, so far as the forming of
ductile materials by spinnj.ngexclusively is considered, the
deformation limit canbe extended as desired by repeated annealing.

The spin-working must he considered, on the other hand, in the
cold hardening of materials. In this respect, spjn-working is only
specially suited to ductile materials, the etrain limit of which
can be substantially raised by cold-working. Only copper smd the
austenitic steels are contemplated as examples. In this case,
the question of the permissible degree of deformation first arises.
The rupture strength forms the upper l-imitof every cold-work
process and simultaneously cofncides with the highest value of the
cold-strengthening. In practice, the danger of rupture can hardly
form the tmmediate limit of spin-workin.g.Whenever the rupture
point also coincides with the maximum raising of the strain llmit,
many other characteristic qualities, such as the magnftude of the
strain, the contraction, and the notch toughness, come into
consideration in addition to the tensile strength in evaluation
for design applications. These characteristics of the material
are h a certain sense inverse fumtions of the strain limit in
that they increase or decrease at the sacrifice or utilization of
the strain ljmit, respectively. In each case, increase of the
tensile strength must be correctly ad~usted in consideration of the
~ractically permissible reduction in ductility. The ductility



becomes zero at the instant of fracture. Under certain circumstances
there is still another phenomenon, namely agin~, to be considered in
connection with the ductility characteristic. Aging exists in that
ductile materiale, which already have had the yield point ra~sed by
cold deformation, have the yield point further slowly raised by a
stress-free recrystallization [NACA comment: Carbide precipitat’~on]
at the cost of the ductility existing immediately afte~ the cold-
straining. Reference is only made to the work of F. Korher and
A. Dreyer (reference6), which contains a large bibliography.
A@ng results in the range of validity and the object of a .gtrenbti?~
and deformation calculation for each methcd of cold-working, being
limited to the duration of the aging and the determination Or the
necessary force required, respectively. The later strength charac-
teristic of the material, which for its moderately worked applica-
tions is alone decisive, could then he established only tlmou@
suitable individual aging tests.

Taken basically, the preliminary calculation of a spin process
under certain conditions is rather unnecessary. If’,for example,
a ~isk of ductile material is spun, the singular point of equa-
tion (7) in the stable region can easily be calculated or detemulned
from associated data on the anf.ylarvelocity, the size, end shape
of the moss section, and the rlm loading. The unstable defozmati.on
region is to be observed throu@ the increase in defcirmationvelocit~
with constant angular velocity. The deformation velocity wc)uldbe
controlled with familiar means, the continuation of the cuz’vein the
unstable flow region also detemined, and the stated measurements
accomplished with repeated stopping and starting of the deformation.
Insofar as there is an espeoial interest in ~t, the instability
point can afterwards be accurately ascertained on the basis of the
curve obtained in this manner.

.

“

In conclusion it is mentioned that, in cases where cold
hardening is the object of spinning, the considerationand practioal
use of the stiultemeous deformation would be an obvious matter.

If and for what purpose and with what manner of materials the
spiming or overdressing can be advantageously applied as a methcd
of fabrication possibly will be decided by the future.

Translated by Arthur G. Holme
National Advisory Committee
for Aeronautics.
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Figure 2. - Rotating ring In region of permanent defommtlon.
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Figure 3. - Rotating ring before and after stretching~
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Figure 4. - Rotating bodies of revolution in region of plastic
deformation.

. Figure 5. - Rotating disks before and after permanent
deformation.
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Figure 7. - Necked tensile specimen.
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